K11a259

From Knot Atlas
Jump to: navigation, search

K11a258.gif

K11a258

K11a260.gif

K11a260

Contents

K11a259.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a259 at Knotilus!



Knot presentations

Planar diagram presentation X6271 X8493 X14,6,15,5 X2837 X18,10,19,9 X20,12,21,11 X4,14,5,13 X22,15,1,16 X12,18,13,17 X10,20,11,19 X16,21,17,22
Gauss code 1, -4, 2, -7, 3, -1, 4, -2, 5, -10, 6, -9, 7, -3, 8, -11, 9, -5, 10, -6, 11, -8
Dowker-Thistlethwaite code 6 8 14 2 18 20 4 22 12 10 16
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation K11a259 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number 3
3-genus 4
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11a259/ThurstonBennequinNumber
Hyperbolic Volume 12.5201
A-Polynomial See Data:K11a259/A-polynomial

[edit Notes for K11a259's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus 4
Rasmussen s-Invariant -6

[edit Notes for K11a259's four dimensional invariants]

Polynomial invariants

Alexander polynomial -t^4+5 t^3-10 t^2+15 t-17+15 t^{-1} -10 t^{-2} +5 t^{-3} - t^{-4}
Conway polynomial -z^8-3 z^6+4 z^2+1
2nd Alexander ideal (db, data sources) \{1\}
Determinant and Signature { 79, 6 }
Jones polynomial -q^{12}+3 q^{11}-6 q^{10}+9 q^9-11 q^8+12 q^7-12 q^6+10 q^5-7 q^4+5 q^3-2 q^2+q
HOMFLY-PT polynomial (db, data sources) -z^8 a^{-6} +z^6 a^{-4} -6 z^6 a^{-6} +2 z^6 a^{-8} +5 z^4 a^{-4} -13 z^4 a^{-6} +9 z^4 a^{-8} -z^4 a^{-10} +8 z^2 a^{-4} -13 z^2 a^{-6} +12 z^2 a^{-8} -3 z^2 a^{-10} +4 a^{-4} -6 a^{-6} +5 a^{-8} -2 a^{-10}
Kauffman polynomial (db, data sources) z^{10} a^{-6} +z^{10} a^{-8} +2 z^9 a^{-5} +6 z^9 a^{-7} +4 z^9 a^{-9} +z^8 a^{-4} +z^8 a^{-6} +8 z^8 a^{-8} +8 z^8 a^{-10} -10 z^7 a^{-5} -22 z^7 a^{-7} -2 z^7 a^{-9} +10 z^7 a^{-11} -6 z^6 a^{-4} -22 z^6 a^{-6} -42 z^6 a^{-8} -17 z^6 a^{-10} +9 z^6 a^{-12} +15 z^5 a^{-5} +17 z^5 a^{-7} -24 z^5 a^{-9} -20 z^5 a^{-11} +6 z^5 a^{-13} +13 z^4 a^{-4} +44 z^4 a^{-6} +53 z^4 a^{-8} +6 z^4 a^{-10} -13 z^4 a^{-12} +3 z^4 a^{-14} -5 z^3 a^{-5} +6 z^3 a^{-7} +26 z^3 a^{-9} +10 z^3 a^{-11} -4 z^3 a^{-13} +z^3 a^{-15} -12 z^2 a^{-4} -28 z^2 a^{-6} -25 z^2 a^{-8} -4 z^2 a^{-10} +5 z^2 a^{-12} -2 z a^{-5} -5 z a^{-7} -7 z a^{-9} -3 z a^{-11} +z a^{-13} +4 a^{-4} +6 a^{-6} +5 a^{-8} +2 a^{-10}
The A2 invariant  q^{-4} +2 q^{-8} + q^{-10} +2 q^{-14} -3 q^{-16} + q^{-18} -2 q^{-20} +2 q^{-24} - q^{-26} +2 q^{-28} - q^{-30} - q^{-36}
The G2 invariant Data:K11a259/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11a221,}

Same Jones Polynomial (up to mirroring, q\leftrightarrow q^{-1}): {}

Vassiliev invariants

V2 and V3: (4, 10)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
16 80 128 \frac{1352}{3} \frac{184}{3} 1280 \frac{8192}{3} \frac{1184}{3} 400 \frac{2048}{3} 3200 \frac{21632}{3} \frac{2944}{3} \frac{256262}{15} -\frac{1768}{15} \frac{307448}{45} \frac{2698}{9} \frac{12662}{15}

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r). The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s-1, where s=6 is the signature of K11a259. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-2-10123456789χ
25           1-1
23          2 2
21         41 -3
19        52  3
17       64   -2
15      65    1
13     66     0
11    46      -2
9   36       3
7  24        -2
5 14         3
3 1          -1
11           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=5 i=7
r=-2 {\mathbb Z}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=2 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=4 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=5 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=6 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=7 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=8 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=9 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a258.gif

K11a258

K11a260.gif

K11a260