L11a404

From Knot Atlas
Jump to: navigation, search

L11a403.gif

L11a403

L11a405.gif

L11a405

Contents

L11a404.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a404 at Knotilus!


Link Presentations

[edit Notes on L11a404's Link Presentations]

Planar diagram presentation X6172 X12,3,13,4 X10,13,5,14 X8,17,9,18 X14,7,15,8 X18,9,19,10 X22,20,11,19 X20,16,21,15 X16,22,17,21 X2536 X4,11,1,12
Gauss code {1, -10, 2, -11}, {10, -1, 5, -4, 6, -3}, {11, -2, 3, -5, 8, -9, 4, -6, 7, -8, 9, -7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a404 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{u v^2 w^3-2 u v^2 w^2+2 u v^2 w+u v w^4-4 u v w^3+7 u v w^2-5 u v w+u v+2 u w^3-4 u w^2+3 u w-u+v^2 w^4-3 v^2 w^3+4 v^2 w^2-2 v^2 w-v w^4+5 v w^3-7 v w^2+4 v w-v-2 w^3+2 w^2-w}{\sqrt{u} v w^2} (db)
Jones polynomial  q^{-9} -3 q^{-8} +8 q^{-7} -12 q^{-6} +19 q^{-5} -20 q^{-4} +22 q^{-3} -q^2-19 q^{-2} +4 q+14 q^{-1} -9 (db)
Signature -2 (db)
HOMFLY-PT polynomial a^8 z^2+2 a^8 z^{-2} +2 a^8-3 a^6 z^4-9 a^6 z^2-5 a^6 z^{-2} -12 a^6+2 a^4 z^6+8 a^4 z^4+16 a^4 z^2+4 a^4 z^{-2} +14 a^4+a^2 z^6+a^2 z^4-2 a^2 z^2-a^2 z^{-2} -4 a^2-z^4-z^2 (db)
Kauffman polynomial z^6 a^{10}-3 z^4 a^{10}+3 z^2 a^{10}-a^{10}+3 z^7 a^9-7 z^5 a^9+4 z^3 a^9+5 z^8 a^8-11 z^6 a^8+10 z^4 a^8-11 z^2 a^8-2 a^8 z^{-2} +8 a^8+4 z^9 a^7-18 z^5 a^7+25 z^3 a^7-18 z a^7+5 a^7 z^{-1} +z^{10} a^6+16 z^8 a^6-50 z^6 a^6+62 z^4 a^6-45 z^2 a^6-5 a^6 z^{-2} +20 a^6+9 z^9 a^5-3 z^7 a^5-34 z^5 a^5+53 z^3 a^5-33 z a^5+9 a^5 z^{-1} +z^{10} a^4+20 z^8 a^4-55 z^6 a^4+62 z^4 a^4-38 z^2 a^4-4 a^4 z^{-2} +15 a^4+5 z^9 a^3+8 z^7 a^3-37 z^5 a^3+41 z^3 a^3-19 z a^3+5 a^3 z^{-1} +9 z^8 a^2-13 z^6 a^2+8 z^4 a^2-6 z^2 a^2-a^2 z^{-2} +3 a^2+8 z^7 a-13 z^5 a+8 z^3 a-4 z a+a z^{-1} +4 z^6-5 z^4+z^2+z^5 a^{-1} -z^3 a^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-8-7-6-5-4-3-2-10123χ
5           1-1
3          3 3
1         61 -5
-1        83  5
-3       127   -5
-5      107    3
-7     1012     2
-9    910      -1
-11   411       7
-13  48        -4
-15 16         5
-17 2          -2
-191           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-3 i=-1
r=-8 {\mathbb Z}
r=-7 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-6 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{4}
r=-5 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-4 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{9}
r=-3 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=-2 {\mathbb Z}^{12}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=-1 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{12} {\mathbb Z}^{12}
r=0 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{8}
r=1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=3 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a403.gif

L11a403

L11a405.gif

L11a405