L11a70

From Knot Atlas
Jump to: navigation, search

L11a69.gif

L11a69

L11a71.gif

L11a71

Contents

L11a70.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a70 at Knotilus!


Link Presentations

[edit Notes on L11a70's Link Presentations]

Planar diagram presentation X6172 X12,3,13,4 X16,8,17,7 X22,18,5,17 X18,9,19,10 X8,21,9,22 X10,14,11,13 X20,15,21,16 X14,19,15,20 X2536 X4,11,1,12
Gauss code {1, -10, 2, -11}, {10, -1, 3, -6, 5, -7, 11, -2, 7, -9, 8, -3, 4, -5, 9, -8, 6, -4}
A Braid Representative
BraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
A Morse Link Presentation L11a70 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{t(1) t(2)^5-2 t(2)^5-5 t(1) t(2)^4+7 t(2)^4+10 t(1) t(2)^3-10 t(2)^3-10 t(1) t(2)^2+10 t(2)^2+7 t(1) t(2)-5 t(2)-2 t(1)+1}{\sqrt{t(1)} t(2)^{5/2}} (db)
Jones polynomial \frac{22}{q^{9/2}}-\frac{23}{q^{7/2}}+\frac{20}{q^{5/2}}+q^{3/2}-\frac{16}{q^{3/2}}-\frac{1}{q^{19/2}}+\frac{3}{q^{17/2}}-\frac{7}{q^{15/2}}+\frac{13}{q^{13/2}}-\frac{19}{q^{11/2}}-5 \sqrt{q}+\frac{10}{\sqrt{q}} (db)
Signature -3 (db)
HOMFLY-PT polynomial z a^9+a^9 z^{-1} -3 z^3 a^7-6 z a^7-3 a^7 z^{-1} +3 z^5 a^5+8 z^3 a^5+8 z a^5+4 a^5 z^{-1} -z^7 a^3-3 z^5 a^3-4 z^3 a^3-4 z a^3-2 a^3 z^{-1} +z^5 a+z^3 a-z a (db)
Kauffman polynomial a^{11} z^5-2 a^{11} z^3+a^{11} z+3 a^{10} z^6-5 a^{10} z^4+3 a^{10} z^2-a^{10}+5 a^9 z^7-6 a^9 z^5+3 a^9 z^3-2 a^9 z+a^9 z^{-1} +6 a^8 z^8-4 a^8 z^6-4 a^8 z^4+8 a^8 z^2-3 a^8+5 a^7 z^9+2 a^7 z^7-17 a^7 z^5+24 a^7 z^3-13 a^7 z+3 a^7 z^{-1} +2 a^6 z^{10}+12 a^6 z^8-28 a^6 z^6+16 a^6 z^4+4 a^6 z^2-3 a^6+12 a^5 z^9-14 a^5 z^7-15 a^5 z^5+30 a^5 z^3-18 a^5 z+4 a^5 z^{-1} +2 a^4 z^{10}+15 a^4 z^8-42 a^4 z^6+26 a^4 z^4-2 a^4 z^2-2 a^4+7 a^3 z^9-6 a^3 z^7-15 a^3 z^5+15 a^3 z^3-7 a^3 z+2 a^3 z^{-1} +9 a^2 z^8-20 a^2 z^6+10 a^2 z^4-a^2 z^2+5 a z^7-10 a z^5+4 a z^3+a z+z^6-z^4 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-8-7-6-5-4-3-2-10123χ
4           1-1
2          4 4
0         61 -5
-2        104  6
-4       117   -4
-6      129    3
-8     1011     1
-10    912      -3
-12   511       6
-14  28        -6
-16 15         4
-18 2          -2
-201           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-4 i=-2
r=-8 {\mathbb Z}
r=-7 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-6 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-5 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-4 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{9}
r=-3 {\mathbb Z}^{12}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=-2 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{12} {\mathbb Z}^{12}
r=-1 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{11} {\mathbb Z}^{11}
r=0 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{10}
r=1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=3 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a69.gif

L11a69

L11a71.gif

L11a71