L11n310

From Knot Atlas
Jump to: navigation, search

L11n309.gif

L11n309

L11n311.gif

L11n311

Contents

L11n310.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n310 at Knotilus!


Link Presentations

[edit Notes on L11n310's Link Presentations]

Planar diagram presentation X6172 X3,13,4,12 X13,19,14,18 X17,11,18,22 X7,17,8,16 X21,8,22,9 X9,20,10,21 X15,5,16,10 X19,15,20,14 X2536 X11,1,12,4
Gauss code {1, -10, -2, 11}, {10, -1, -5, 6, -7, 8}, {-11, 2, -3, 9, -8, 5, -4, 3, -9, 7, -6, 4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n310 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{-t(2) t(3)^4+t(3)^4+t(1) t(2)^2 t(3)^3+t(1) t(3)^3-3 t(1) t(2) t(3)^3+3 t(2) t(3)^3-2 t(3)^3-2 t(1) t(2)^2 t(3)^2+t(2)^2 t(3)^2-t(1) t(3)^2+4 t(1) t(2) t(3)^2-4 t(2) t(3)^2+2 t(3)^2+2 t(1) t(2)^2 t(3)-t(2)^2 t(3)-3 t(1) t(2) t(3)+3 t(2) t(3)-t(3)-t(1) t(2)^2+t(1) t(2)}{\sqrt{t(1)} t(2) t(3)^2} (db)
Jones polynomial -q^8+3 q^7-7 q^6+10 q^5-12 q^4+14 q^3-11 q^2+10 q-5+3 q^{-1} (db)
Signature 2 (db)
HOMFLY-PT polynomial -z^4 a^{-6} -2 z^2 a^{-6} - a^{-6} z^{-2} -3 a^{-6} +z^6 a^{-4} +4 z^4 a^{-4} +10 z^2 a^{-4} +4 a^{-4} z^{-2} +11 a^{-4} -4 z^4 a^{-2} -12 z^2 a^{-2} -5 a^{-2} z^{-2} -13 a^{-2} +3 z^2+2 z^{-2} +5 (db)
Kauffman polynomial z^5 a^{-9} -2 z^3 a^{-9} +z a^{-9} +3 z^6 a^{-8} -5 z^4 a^{-8} +z^2 a^{-8} +5 z^7 a^{-7} -9 z^5 a^{-7} +5 z^3 a^{-7} -4 z a^{-7} + a^{-7} z^{-1} +5 z^8 a^{-6} -9 z^6 a^{-6} +8 z^4 a^{-6} -8 z^2 a^{-6} - a^{-6} z^{-2} +5 a^{-6} +2 z^9 a^{-5} +5 z^7 a^{-5} -22 z^5 a^{-5} +32 z^3 a^{-5} -21 z a^{-5} +5 a^{-5} z^{-1} +10 z^8 a^{-4} -29 z^6 a^{-4} +44 z^4 a^{-4} -36 z^2 a^{-4} -4 a^{-4} z^{-2} +18 a^{-4} +2 z^9 a^{-3} +3 z^7 a^{-3} -18 z^5 a^{-3} +35 z^3 a^{-3} -29 z a^{-3} +9 a^{-3} z^{-1} +5 z^8 a^{-2} -17 z^6 a^{-2} +37 z^4 a^{-2} -41 z^2 a^{-2} -5 a^{-2} z^{-2} +21 a^{-2} +3 z^7 a^{-1} -6 z^5 a^{-1} +10 z^3 a^{-1} -13 z a^{-1} +5 a^{-1} z^{-1} +6 z^4-14 z^2-2 z^{-2} +9 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-2-101234567χ
17         1-1
15        2 2
13       51 -4
11      52  3
9     75   -2
7    75    2
5   58     3
3  56      -1
1 27       5
-113        -2
-33         3
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=1 i=3
r=-2 {\mathbb Z}^{3} {\mathbb Z}
r=-1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{5}
r=1 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=2 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{7}
r=3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=4 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n309.gif

L11n309

L11n311.gif

L11n311