L11n449

From Knot Atlas
Jump to: navigation, search

L11n448.gif

L11n448

L11n450.gif

L11n450

Contents

L11n449.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n449 at Knotilus!


Link Presentations

[edit Notes on L11n449's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X13,20,14,21 X16,12,17,11 X19,12,20,13 X8,16,5,15 X14,8,15,7 X22,17,19,18 X18,21,9,22 X2536 X4,9,1,10
Gauss code {1, -10, 2, -11}, {10, -1, 7, -6}, {-5, 3, 9, -8}, {11, -2, 4, 5, -3, -7, 6, -4, 8, -9}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n449 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(t(4)-1) \left(-t(1) t(4)^2+t(1) t(2) t(4)^2-2 t(2) t(4)^2+t(4)^2+t(1) t(4)-t(2) t(3) t(4)+2 t(1) t(3)-t(1) t(2) t(3)+t(2) t(3)-t(3)\right)}{\sqrt{t(1)} \sqrt{t(2)} \sqrt{t(3)} t(4)^{3/2}} (db)
Jones polynomial \sqrt{q}-\frac{5}{\sqrt{q}}+\frac{6}{q^{3/2}}-\frac{8}{q^{5/2}}+\frac{7}{q^{7/2}}-\frac{9}{q^{9/2}}+\frac{5}{q^{11/2}}-\frac{5}{q^{13/2}}+\frac{1}{q^{15/2}}-\frac{1}{q^{17/2}} (db)
Signature -1 (db)
HOMFLY-PT polynomial a^9 z^{-3} +a^9 z^{-1} -3 a^7 z^{-3} -3 a^7 z-5 a^7 z^{-1} +3 a^5 z^3+3 a^5 z^{-3} +6 a^5 z+6 a^5 z^{-1} -a^3 z^5-2 a^3 z^3-a^3 z^{-3} -2 a^3 z-a^3 z^{-1} +a z^3-a z-a z^{-1} (db)
Kauffman polynomial a^9 z^7-6 a^9 z^5+13 a^9 z^3-a^9 z^{-3} -13 a^9 z+6 a^9 z^{-1} +a^8 z^8-2 a^8 z^6-6 a^8 z^4+17 a^8 z^2+3 a^8 z^{-2} -13 a^8+a^7 z^9-14 a^7 z^5+29 a^7 z^3-3 a^7 z^{-3} -27 a^7 z+14 a^7 z^{-1} +5 a^6 z^8-14 a^6 z^6-3 a^6 z^4+28 a^6 z^2+6 a^6 z^{-2} -24 a^6+a^5 z^9+5 a^5 z^7-26 a^5 z^5+30 a^5 z^3-3 a^5 z^{-3} -22 a^5 z+12 a^5 z^{-1} +4 a^4 z^8-9 a^4 z^6+11 a^4 z^2+3 a^4 z^{-2} -11 a^4+6 a^3 z^7-18 a^3 z^5+19 a^3 z^3-a^3 z^{-3} -8 a^3 z+3 a^3 z^{-1} +3 a^2 z^6-3 a^2 z^4+a^2 z^2+a^2+5 a z^3-a z^{-1} +z^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-8-7-6-5-4-3-2-101χ
2         1-1
0        4 4
-2       54 -1
-4      321 2
-6     45   1
-8    53    2
-10   48     4
-12  11      0
-14  4       4
-1611        0
-181         1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-4 i=-2 i=0
r=-8 {\mathbb Z} {\mathbb Z}
r=-7 {\mathbb Z}
r=-6 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-4 {\mathbb Z}^{8}\oplus{\mathbb Z}_2 {\mathbb Z}^{5}
r=-3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=0 {\mathbb Z} {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{4}
r=1 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n448.gif

L11n448

L11n450.gif

L11n450